\(\int \frac {(f+g x^2) \log (c (d+e x^2)^p)}{x^2} \, dx\) [320]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 72 \[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x^2} \, dx=-2 g p x+\frac {2 (e f+d g) p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d} \sqrt {e}}-\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{x}+g x \log \left (c \left (d+e x^2\right )^p\right ) \]

[Out]

-2*g*p*x-f*ln(c*(e*x^2+d)^p)/x+g*x*ln(c*(e*x^2+d)^p)+2*(d*g+e*f)*p*arctan(x*e^(1/2)/d^(1/2))/d^(1/2)/e^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.29, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2526, 2498, 327, 211, 2505} \[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x^2} \, dx=\frac {2 \sqrt {e} f p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d}}+\frac {2 \sqrt {d} g p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {e}}-\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{x}+g x \log \left (c \left (d+e x^2\right )^p\right )-2 g p x \]

[In]

Int[((f + g*x^2)*Log[c*(d + e*x^2)^p])/x^2,x]

[Out]

-2*g*p*x + (2*Sqrt[e]*f*p*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/Sqrt[d] + (2*Sqrt[d]*g*p*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/S
qrt[e] - (f*Log[c*(d + e*x^2)^p])/x + g*x*Log[c*(d + e*x^2)^p]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2498

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)], x_Symbol] :> Simp[x*Log[c*(d + e*x^n)^p], x] - Dist[e*n*p, Int[
x^n/(d + e*x^n), x], x] /; FreeQ[{c, d, e, n, p}, x]

Rule 2505

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))*((f_.)*(x_))^(m_.), x_Symbol] :> Simp[(f*x)^(m +
 1)*((a + b*Log[c*(d + e*x^n)^p])/(f*(m + 1))), x] - Dist[b*e*n*(p/(f*(m + 1))), Int[x^(n - 1)*((f*x)^(m + 1)/
(d + e*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && NeQ[m, -1]

Rule 2526

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
 x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x^n)^p])^q, x^m*(f + g*x^s)^r, x], x] /; FreeQ[{a, b, c,
 d, e, f, g, m, n, p, q, r, s}, x] && IGtQ[q, 0] && IntegerQ[m] && IntegerQ[r] && IntegerQ[s]

Rubi steps \begin{align*} \text {integral}& = \int \left (g \log \left (c \left (d+e x^2\right )^p\right )+\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{x^2}\right ) \, dx \\ & = f \int \frac {\log \left (c \left (d+e x^2\right )^p\right )}{x^2} \, dx+g \int \log \left (c \left (d+e x^2\right )^p\right ) \, dx \\ & = -\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{x}+g x \log \left (c \left (d+e x^2\right )^p\right )+(2 e f p) \int \frac {1}{d+e x^2} \, dx-(2 e g p) \int \frac {x^2}{d+e x^2} \, dx \\ & = -2 g p x+\frac {2 \sqrt {e} f p \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d}}-\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{x}+g x \log \left (c \left (d+e x^2\right )^p\right )+(2 d g p) \int \frac {1}{d+e x^2} \, dx \\ & = -2 g p x+\frac {2 \sqrt {e} f p \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d}}+\frac {2 \sqrt {d} g p \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {e}}-\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{x}+g x \log \left (c \left (d+e x^2\right )^p\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.86 \[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x^2} \, dx=-2 g p x+\frac {2 (e f+d g) p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d} \sqrt {e}}+\left (-\frac {f}{x}+g x\right ) \log \left (c \left (d+e x^2\right )^p\right ) \]

[In]

Integrate[((f + g*x^2)*Log[c*(d + e*x^2)^p])/x^2,x]

[Out]

-2*g*p*x + (2*(e*f + d*g)*p*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(Sqrt[d]*Sqrt[e]) + (-(f/x) + g*x)*Log[c*(d + e*x^2)^
p]

Maple [A] (verified)

Time = 0.67 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.01

method result size
parts \(g x \ln \left (c \left (e \,x^{2}+d \right )^{p}\right )-\frac {f \ln \left (c \left (e \,x^{2}+d \right )^{p}\right )}{x}-2 p e \left (\frac {g x}{e}+\frac {\left (-d g -e f \right ) \arctan \left (\frac {x e}{\sqrt {d e}}\right )}{e \sqrt {d e}}\right )\) \(73\)
risch \(-\frac {\left (-g \,x^{2}+f \right ) \ln \left (\left (e \,x^{2}+d \right )^{p}\right )}{x}+\frac {i \pi g \,x^{2} \operatorname {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{2} d e -i \pi g \,x^{2} \operatorname {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right ) \operatorname {csgn}\left (i c \right ) d e -i \pi g \,x^{2} {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{3} d e +i \pi g \,x^{2} {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{2} \operatorname {csgn}\left (i c \right ) d e -i \pi d e f \,\operatorname {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{2}+i \pi d e f \,\operatorname {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right ) \operatorname {csgn}\left (i c \right )+i \pi d e f {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{3}-i \pi d e f {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{2} \operatorname {csgn}\left (i c \right )+2 \sqrt {-d e}\, p \ln \left (-\sqrt {-d e}\, x +d \right ) g d x +2 \sqrt {-d e}\, p \ln \left (-\sqrt {-d e}\, x +d \right ) f e x -2 \sqrt {-d e}\, p \ln \left (-\sqrt {-d e}\, x -d \right ) g d x -2 \sqrt {-d e}\, p \ln \left (-\sqrt {-d e}\, x -d \right ) f e x +2 \ln \left (c \right ) g \,x^{2} d e -4 d g p \,x^{2} e -2 \ln \left (c \right ) d e f}{2 d e x}\) \(427\)

[In]

int((g*x^2+f)*ln(c*(e*x^2+d)^p)/x^2,x,method=_RETURNVERBOSE)

[Out]

g*x*ln(c*(e*x^2+d)^p)-f*ln(c*(e*x^2+d)^p)/x-2*p*e*(g*x/e+(-d*g-e*f)/e/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 199, normalized size of antiderivative = 2.76 \[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x^2} \, dx=\left [-\frac {2 \, d e g p x^{2} + \sqrt {-d e} {\left (e f + d g\right )} p x \log \left (\frac {e x^{2} - 2 \, \sqrt {-d e} x - d}{e x^{2} + d}\right ) - {\left (d e g p x^{2} - d e f p\right )} \log \left (e x^{2} + d\right ) - {\left (d e g x^{2} - d e f\right )} \log \left (c\right )}{d e x}, -\frac {2 \, d e g p x^{2} - 2 \, \sqrt {d e} {\left (e f + d g\right )} p x \arctan \left (\frac {\sqrt {d e} x}{d}\right ) - {\left (d e g p x^{2} - d e f p\right )} \log \left (e x^{2} + d\right ) - {\left (d e g x^{2} - d e f\right )} \log \left (c\right )}{d e x}\right ] \]

[In]

integrate((g*x^2+f)*log(c*(e*x^2+d)^p)/x^2,x, algorithm="fricas")

[Out]

[-(2*d*e*g*p*x^2 + sqrt(-d*e)*(e*f + d*g)*p*x*log((e*x^2 - 2*sqrt(-d*e)*x - d)/(e*x^2 + d)) - (d*e*g*p*x^2 - d
*e*f*p)*log(e*x^2 + d) - (d*e*g*x^2 - d*e*f)*log(c))/(d*e*x), -(2*d*e*g*p*x^2 - 2*sqrt(d*e)*(e*f + d*g)*p*x*ar
ctan(sqrt(d*e)*x/d) - (d*e*g*p*x^2 - d*e*f*p)*log(e*x^2 + d) - (d*e*g*x^2 - d*e*f)*log(c))/(d*e*x)]

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 204 vs. \(2 (71) = 142\).

Time = 15.37 (sec) , antiderivative size = 204, normalized size of antiderivative = 2.83 \[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x^2} \, dx=\begin {cases} \left (- \frac {f}{x} + g x\right ) \log {\left (0^{p} c \right )} & \text {for}\: d = 0 \wedge e = 0 \\\left (- \frac {f}{x} + g x\right ) \log {\left (c d^{p} \right )} & \text {for}\: e = 0 \\- \frac {2 f p}{x} - \frac {f \log {\left (c \left (e x^{2}\right )^{p} \right )}}{x} - 2 g p x + g x \log {\left (c \left (e x^{2}\right )^{p} \right )} & \text {for}\: d = 0 \\\frac {2 d g p \log {\left (x - \sqrt {- \frac {d}{e}} \right )}}{e \sqrt {- \frac {d}{e}}} - \frac {d g \log {\left (c \left (d + e x^{2}\right )^{p} \right )}}{e \sqrt {- \frac {d}{e}}} + \frac {2 f p \log {\left (x - \sqrt {- \frac {d}{e}} \right )}}{\sqrt {- \frac {d}{e}}} - \frac {f \log {\left (c \left (d + e x^{2}\right )^{p} \right )}}{\sqrt {- \frac {d}{e}}} - \frac {f \log {\left (c \left (d + e x^{2}\right )^{p} \right )}}{x} - 2 g p x + g x \log {\left (c \left (d + e x^{2}\right )^{p} \right )} & \text {otherwise} \end {cases} \]

[In]

integrate((g*x**2+f)*ln(c*(e*x**2+d)**p)/x**2,x)

[Out]

Piecewise(((-f/x + g*x)*log(0**p*c), Eq(d, 0) & Eq(e, 0)), ((-f/x + g*x)*log(c*d**p), Eq(e, 0)), (-2*f*p/x - f
*log(c*(e*x**2)**p)/x - 2*g*p*x + g*x*log(c*(e*x**2)**p), Eq(d, 0)), (2*d*g*p*log(x - sqrt(-d/e))/(e*sqrt(-d/e
)) - d*g*log(c*(d + e*x**2)**p)/(e*sqrt(-d/e)) + 2*f*p*log(x - sqrt(-d/e))/sqrt(-d/e) - f*log(c*(d + e*x**2)**
p)/sqrt(-d/e) - f*log(c*(d + e*x**2)**p)/x - 2*g*p*x + g*x*log(c*(d + e*x**2)**p), True))

Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x^2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((g*x^2+f)*log(c*(e*x^2+d)^p)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.94 \[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x^2} \, dx=-{\left (2 \, g p - g \log \left (c\right )\right )} x + {\left (g p x - \frac {f p}{x}\right )} \log \left (e x^{2} + d\right ) + \frac {2 \, {\left (e f p + d g p\right )} \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}} - \frac {f \log \left (c\right )}{x} \]

[In]

integrate((g*x^2+f)*log(c*(e*x^2+d)^p)/x^2,x, algorithm="giac")

[Out]

-(2*g*p - g*log(c))*x + (g*p*x - f*p/x)*log(e*x^2 + d) + 2*(e*f*p + d*g*p)*arctan(e*x/sqrt(d*e))/sqrt(d*e) - f
*log(c)/x

Mupad [B] (verification not implemented)

Time = 1.61 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.15 \[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x^2} \, dx=\ln \left (c\,{\left (e\,x^2+d\right )}^p\right )\,\left (2\,g\,x-\frac {g\,x^2+f}{x}\right )-2\,g\,p\,x+\frac {2\,p\,\mathrm {atan}\left (\frac {2\,\sqrt {e}\,p\,x\,\left (d\,g+e\,f\right )}{\sqrt {d}\,\left (2\,d\,g\,p+2\,e\,f\,p\right )}\right )\,\left (d\,g+e\,f\right )}{\sqrt {d}\,\sqrt {e}} \]

[In]

int((log(c*(d + e*x^2)^p)*(f + g*x^2))/x^2,x)

[Out]

log(c*(d + e*x^2)^p)*(2*g*x - (f + g*x^2)/x) - 2*g*p*x + (2*p*atan((2*e^(1/2)*p*x*(d*g + e*f))/(d^(1/2)*(2*d*g
*p + 2*e*f*p)))*(d*g + e*f))/(d^(1/2)*e^(1/2))